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SUMMARY

This paper describes a fully automatic 3D anisotropic mesh generation method for domains of arbitrary
shape. The spacing of the boundary mesh is computed by the analysis of the principal curvatures and
directions of the boundary surfaces. The spacing in the domain is obtained by interpolation of the
spacing at the boundaries on a suitably constructed background mesh. Examples which illustrate the
performance of the proposed methodology are presented. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The availability of ever increasing computational resources and of e�cient and robust CFD
solution algorithms allows the numerical simulation of very complex �ow �elds. The genera-
tion of the grid is probably the bottleneck in terms of human resources required to complete a
CFD simulation for domains of complex shape such as, for example, an aircraft con�guration.
The construction of a grid which minimizes the number of nodes required to compute a �ow
�eld within a prescribed tolerance level, or even of a grid which approximates the geometry
of the domain with su�cient accuracy to allow the computation of an initial coarse solution
in an adaptive solution process, remains in fact a di�cult and time-consuming task with the
commonly available software.
Among the many tasks which require substantial user input in grid generation, that of

prescribing the mesh spacing for a complex domain is probably the most demanding in terms
of human resources required. We here describe a 3D anisotropic unstructured grid-generation
algorithm, which, instead, requires a very limited user input even for very complex geometries
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since the mesh spacing is automatically de�ned as a function of the curvature of the boundary
of the domain. We follow the widely adopted approach [1, 2] which consists in augmenting
the domain to be meshed with a metric �eld M(x) (i.e. to de�ne a Riemannian structure on
the domain) and in requiring that all the mesh edges have the same length with respect to
M(x) (typically unit length edges lengths in M(x) are chosen). This leads to an anisotropic
control of the mesh spacing, which means to control not only the mesh element size but also
their aspect ratio. This approach decreases signi�cantly the nodes number used when the �ow
�eld or the geometry of the domain are characterized by anisotropic features.
Following the ideas introduced in Reference [3], the metric �eld on the boundary is com-

puted according to the principal curvatures and directions of the boundary surface. This
approach is, however, not appropriate if the surface curvature is very small, since it leads
to excessive mesh spacings. The generally adopted approach to deal with ‘nearly �at’ sur-
faces is to limit the spacing with a threshold value prescribed in an isotropic manner. As a
consequence all the informations regarding the anisotropy of the mesh are completely lost in
regions of small surface curvature and much of the potential savings allowed by anisotropic
unstructured meshes are not fully realized in practice. This situation is typical in many
applications such as, for example, high aspect ratio wings and turbomachinery bladings. An
original anisotropic treatment for ‘nearly �at’ surfaces has been developed in this work. After
establishing the metric �eld distribution on the boundary, we proceed with the surface mesh
generation using an approach, sometimes referred to as the ‘indirect approach’, which consists
in generating the mesh in the parametric domain associated to the surface and in mapping the
resulting mesh onto the real surface. Using the surface mesh as input data it is then possible
to build a background grid, which is used to interpolate the value of the boundary metric �eld
at any other points. The computational domain is then discretized by using the 3D anisotropic
mesh generator.
The anisotropic mesh-generation approach has been applied with success to the computation

of inviscid �ow around complex aeronautical con�gurations.

2. RIEMANNIAN METRIC

An anisotropic control of the mesh spacing has been chosen for this work, which means that
we will be able to control not only the mesh elements size but also their aspect ratio. This
is realized by requiring that all the edges of the mesh are of unit length with respect to a
suitable de�ned metric �eld M(x), where x is a point of Rd (d=2; 3). M(x) is a (d × d)
symmetric positive de�nite matrix. For example, in two dimensions, we consider

(
a(x) b(x)

b(x) c(x)

)
(1)

such that a¿0, c¿0 and ac − b2¿0, for a; b; c ∈ R. If the �eld of tensors thus de�ned is
known, it induces a Riemannian structure over Rd.
The length with respect to M of an arbitrary mesh edge v is approximated as

‖v‖M=
√
vTM(x̂)v (2)
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where x̂ is the midpoint of edge v. When M(x) is independent of the position x, we again
�nd the classical Euclidean case, otherwise we are in the Riemannian context.
The matrix M(x) can be factorized as

M(x)=R(x)�(x)R(x)T (3)

where

R(x)= [r1(x); : : : ; rn(x)] (4)

is the orthogonal matrix of the normalized (right) eigenvectors of M(x) and

�(x)=diag(�1(x); : : : ; �n(x)) (5)

is the diagonal matrix of real eigenvalues �i¿0, i=1; : : : ; n.
We can associate to M(x) a transformation matrix T(x) de�ned as

T(x)=
√
M(x)=R(x)

√
�(x)R(x)T (6)

and we therefore can express M(x) in terms of T(x) as

M(x)=T(x)TT(x)=T(x)T(x)T (7)

The transformation matrix T maps an edge v of unit length with respect to M into an edge
w=Tv of unit length in the usual Euclidean norm. We have in fact that

‖w‖=
√
wTw=

√
vTTTTv=

√
vTMv= ‖v‖M

3. GEOMETRICAL CHARACTERISTICS OF AN ELEMENT

The geometrical characteristics of an element can be de�ned in terms of a set of n orthog-
onal directions �i and n associated element sizes �i, where n is the number of dimensions
(Figure 1). The transformation matrix T can then be regarded as the result of combining n
scaling operations, with factor 1=�i, in each direction �i, i.e.

T=
n∑
i=1

1
�i
�i�Ti (8)

By rewriting Equation (6) as

T=
n∑
i=1

√
�irirTi (9)

and by comparing with Equation (8) we therefore have that

�i=
1√
�i
; �i= ri (10)
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Figure 1. Spacing and directions de�ned by transformation matrix T.

The spacing s(�) in the generic direction de�ned by the unit vector � (Figure 1) is given by

s(�)= ‖T�‖−1

4. MESHING METHOD

The generation problem consists in subdividing an arbitrary complex domain into a consistent
assembly of elements. The consistency of the mesh is guaranteed if the generated elements
cover the entire domain and the intersection between elements occurs only on common points,
sides, or triangular faces in the 3D case. The �nal mesh is built following a bottom-up logic.
We brie�y describe here the advancing front technique [1, 4], but other techniques, like those
based on Delaunay triangulation [5, 6], may be used as an alternative for the unstructured
mesh generation.
The process starts by discretizing each boundary curve as a set of straight-line segments.

The length of these segments must be unitary with respect to the Riemannian structure.
The next step consists in generating triangular planar faces on surfaces, achieved using

an indirect approach. The grid is generated in the parametric space and then mapped onto
the real surface. At each iteration a front, which is a dynamic data structure containing the
set of all sides currently available to form a triangular face, is de�ned. Initially, the front
contains the edges, which discretize the boundary curves. When forming a new triangle, a
front element is connected to a new node or to an existing node. After the triangle has been
generated, the front is updated and the generation process proceeds until the front is empty.
The size and shape of the generated triangles must be consistent with the information induced
in the parametric space by the surface metric �eld. Finally, the mesh is mapped onto the real
surface, de�ning the triangles which will become faces of the tetrahedra to be generated later.
The last step consists in discretizing the volume, still using the advancing front procedure.

The front is now made up by the triangular faces which are available to form a tetrahedron.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 2. Metrics intersection.

The initial front is obtained by assembling the triangulations of the boundary surfaces. Nodes
and elements will be simultaneously created. When forming a new tetrahedron, the three nodes
belonging to a front element are connected either to an existing node or to a new node. After
a tetrahedron has been generated, the front is updated. The generation procedure is completed
when the front is empty.

5. MESH SPACING CONTROL ON THE BOUNDARY

The objective of surface mesh generation is to construct a triangulation in which the maximum
distance from the real surface is below a prescribed threshold value—this is a useful and
practical way to arrive at meshes which approximate the real surface as accurately as required.
In practice, we have however to construct a metric �eld M3 on the real surface � so that the
above criterion is satis�ed by unitary (in M3) mesh edges, and a corresponding metric M2

in the parametric space � which will be used as input data by the surface mesh generator.
The manner in which M3 and M2 are constructed is described in the following.

5.1. Mesh spacing based on local curvature

Let � be a surface de�ned by the parametrization r(u; v) ∈ R3, P a point of � of coordinates
rP(uP; vP), n the normal to � at P, and t the unit tangent vector along some curves on �
passing at P. By locally approximating in the neighbourhood of P the curve by its osculating
circle, the ratio � between �, the maximal gap between the osculating circle and its chord of
arc, and the osculating circle radius �, is given by

� ≡ �
�
=1−

√
1− (�=2)2 (11)
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Figure 3. E�ects of the discontinuity in the metric �eld of a stator blade.

Figure 4. Metric smoothing e�ect at the intersection zone stator=hub.

where �= ht=�, and ht= �� is the chord length. The parameter � is therefore given as a
function of � according to

� ≡ ht
�
=2
√
�(2− �) (12)

The above equation is employed to compute the chord length ht for a prescribed value of
�—a parameter which measures how closely the chord approximates the real curve.
The geometrical characteristics of a surface element may be obtained by applying the above

analysis in the surface principal directions, see, e.g. Reference [7], i.e. the directions in which
the surface curvature assumes its minimum and maximum values. The two principal directions,

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 5. Construction of the symmetry plane background grid of an
aeronautical con�guration wing–fuselage.

di ∈ R3, can be de�ned as

di=
J(r)v̇i√
v̇Ti Gv̇i

; i=1; 2 (13)

where J(r) is the Jacobian matrix of the mapping r= r(u; v), i.e.

J(r)=
[
@r
@u
;
@r
@v

]
(14)

G=JTJ is the �rst fundamental matrix of the surface �, and vi ∈ R2 the principal directions in
the parametric space u−v. Note that, by construction, the directions d1 and d2 are orthogonal.
The element sizes hi associated to the directions di are, then, computed as

hi=2�i
√
�(2− �)=

√
�(2− �)
�i

(15)

where � is a user prescribed parameter (the e�ect of � on the mesh spacing is shown in
Figure 1), �i the principal radii of curvature and �i the principal curvature.
Finally, the metric tensor M3(P) associated to the surface is computed according to

M3(P)=
3∑
i=1

1
h2i
didTi (16)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115



1104 A. GHIDONI ET AL.

Figure 6. Grid around a nacelle.

Figure 7. Grids around a nacelle for di�erent values of �.

where d3 = n and h3 = min(h1; h2). The metric M2(P) can be simply expressed as

M2(P)=J(r)TM3(P)J(r) (17)

where J is de�ned in Equation (14).

5.2. Treatment of ‘nearly �at’ surfaces

The values of hi have to be occasionally limited, in order to avoid too large or too small
elements. If h1 and h2 denote the smallest and the largest spacings, respectively, the limited
spacings h̃i are de�ned as

h̃1 = min(max(h1; h1;m); h1;M )

h̃2 = min(max(h2; h2;m); h2;M ; sMh1)
(18)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Table I. Nacelle surface mesh statistics for di�erent values of �.

Test � NP NT

Nacelle 0.00125 8417 16830
Nacelle 0.0317 5358 10712

Figure 8. Wing–fuselage aeronautical con�guration.

where hi; m and hi; M are the minimum and maximum value that hi can assume. The parameter
sM represents the maximum value of element stretching. By choosing sM =1, an isotropic
element will be formed.
The quantities hi;m and hi;M are de�ned as follows. Let us denote by lu and lv, the

length of the curves represented parametrically by equations u=[uP; v(s)]T and u=[u(s); vP]T,
respectively. The spacing hu and hv are computed as a fractional part of the lengths lu and
lv, i.e.

hu=
lu
nu
; hv=

lv
nv

(19)

where the parameters nu and nv (nu; nv¿1) are constants (integer) de�ned on �. The quantities
hi;M are computed by using the Euler theorem⎛

⎜⎜⎜⎝
1
h2u
1
h2v

⎞
⎟⎟⎟⎠ =

2∑
i=1

1
h2i; M

cos2
(
’i; u

’i; v

)
(20)
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1106 A. GHIDONI ET AL.

Figure 9. Detail of the wing=tip zone.

Figure 10. Wing section near the fuselage (wind coming from the right).

where ’i; u and ’i; v are the angles formed by the principal direction di with the tangent vectors
to the curves u=[uP; v(t)]T and u=[u(t); vP]T, denoted by tu and tv, respectively. In addition,
hi;m are de�ned as a fraction of hi;M or by taking a constant value on the surface.
When the geometric model is too complex, the computation of hi;M is performed by using

the concept of background surface spacing characteristics, which are built by the knowledge
of the characteristic dimensions of the object to be discretized and of the tangent vectors to
the surface.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 11. Wing section near the tip (wind coming from the right).

Figure 12. The isotropic (left) and anisotropic (right) grid on the wing.

When the surface is a plane (�i=∞) or when the principal curvatures are equal, the
principal directions of normal curvature are unde�ned. However, the directions tu and tv still
exist and can be chosen as directions di, if tu · tv=0. In this case, the spacings h̃i associated
to the directions di are, respectively, hu and hv, if tu · tv �= 0, d1 is chosen coincident with the
direction which speci�es the minimum spacing and d2 = d1 × n. In this case, h̃1 = min(hu; hv)
and h̃2 is computed by using Equation (20).

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 13. Detail of the isotropic (left) and anisotropic (right) grid at the
wing=fuselage intersection zone.

Figure 14. Surface elements quality distribution.

Figure 15. Tetrahedra quality distribution.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 16. Pressure �eld on the aircraft.

Figure 17. Pressure �eld on the winglet.

5.3. Metric intersection

A prerequisite for the grid-generation algorithm is the speci�cation of only one metric at each
point. However, the metrics are multi-de�ned on the boundary curves and at each corner.
Thus, in these points, a metric intersection is requested.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 18. Complex aeronautical geometry.

Let P be a point in the space at which two di�erent metrics exist, say Ma(P) and Mb(P),
de�ned as

Ma(P)=
3∑
i=1

1
�2i
�i�Ti ; Mb(P)=

3∑
i=1

1
�2i
�i�

T
i (21)

The directions �i of the intersection metric are chosen coincident with the directions associ-
ated to the metric matrix which speci�es the minimum spacing, i.e. �i= �i. The new metric
Mnew(P) is de�ned (Figure 2) as

Mnew(P)=
3∑
i=1

1
h2i
�i�

T
i (22)

where

hi= min
(
�i;

1
‖Tb�i‖−1

)
(23)

5.4. Metric smoothing

Due to the fact that the metrics on the boundary curves and at each corner are, in general,
multi-de�ned, discontinuity or large gradient may appear in the metric �eld, which can lead
to the generation of bad quality elements. In Figure 3 we can see this e�ect at the intersection
zone between the stator blade and the hub of a turbine.
A spring-analogy-based algorithm [8] is used to propagate and regularize the metric �eld.

It is �rst assumed that each node i is connected to each adjacent node j by a �ctitious spring
under the generalized force Fij de�ned by

Fij=Kij(T−1
j − T−1

i ) (24)

where the scalar Kij is the spring constant, Ti and Tj are the transformation matrices associated
to nodes i and j. The spring constant can be expressed as

Kij=K smij K
lg
ij (25)

where

K smij =
Aije1 + A

ij
e2

Ai
(26)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 19. Detail of the wing=pylon=nacelle discretization.

is the spring constant associated to a Laplacian smoothing algorithm and

K lgij =
1
�

√
(xj − xi)TMij(xj − xi)
(xj − xi)T(xj − xi) (27)

is related to the locally required grid spacing. Aije1 and A
ij
e2 are the areas of the two elements

adjacent to side ij, Ai is the area of the elements surrounding node i, � a scaling factor,
which is taken equal to the maximum value of K lgij (with �=1) over the patch of elements
surrounding node i, Mij the metric matrix along side ij.
The resulting metric �eld is the solution of the equilibrium system for each vertex i:

∑
j∈Ki

Fij=0 (28)

where Ki is the set of nodes surrounding i. In this work, a few iterations of the following
pointwise scheme is actually used to smooth the metric �eld:

T−1
i; (p) =T

−1
i; (p−1) +

∑
j∈Ki

Fij; (p−1)

=T−1
i; (p−1) +

∑
j∈Ki

Kij(T−1
j; (p−1) − T−1

i; (p−1)) (29)

In Figure 4 the e�ect of the metric smoothing algorithm is shown on the geometry presented
above.

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 20. Detail of the wing=pylon intersection zone.

6. MESH SPACING CONTROL IN THE VOLUME

The mesh spacing in the volume is controlled through a background grid, which is used
to interpolate the boundary value of the metric �eld at any other point of the domain to be
discretized. The procedure in order to build the background grid is described in the following.
The process starts constructing the Delaunay triangulation [9, 10] of the points, which dis-

cretize the skin surface and the external boundaries. The circumcentres of the tetrahedra that
have at least one node on the skin and that are not inside the body are computed. An ‘average’
direction �vil is obtained by solving the minimization problem

min
nj∑
j=1

(
1− �vil · vij

‖vij‖
)2

(30)

where vij are the vectors that connect the node i on the skin with the set of circumcentres j
associated to the elements which have node i as vertex, and nj is the number of circumcentres
belonging to the set. Then, the vector vil is constructed connecting the node i with the local
node l which is located at the intersection of the direction �vil with the surface formed by the
nj circumcentres. The procedure is repeated by taking the new layer of nodes l as external
boundary until a maximum of iterations is reached. This results in the construction of a
succession of nodes layers which become closer and closer to the skin surface (Figure 5).
The background grid is de�ned by building the Delaunay triangulation of the nodes on the

skin, on the external boundary and on additional layers. The transformation matrix Tl at the

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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Figure 21. Detail of the grid at the wing root.

Figure 22. Rear fuselage view.

node l is computed as

Tl=((1−!)T−1
i +!T−1

∞ )
−1; ! ∈ [0; 1] (31)

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:1097–1115
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where T∞ is the transformation matrix based on the element characteristics at the external
boundary, Ti the transformation matrix associated to the skin of nodes i and ! a parameter
de�ned as

!=f(‖vil‖; r∞; b)= (1− b)
(‖vil‖
r∞

)2
+ b

‖vil‖
r∞

(32)

where r∞ is the distance from the skin to the external boundary and the coe�cient b the
slope of the function at its origin.

7. APPLICATION EXAMPLES

We will now present the results obtained on three geometries: a nacelle, a wing–fuselage
aeronautical con�guration with a large winglet and a complete aircraft.
In the �rst case (Figure 6), the mesh on a nacelle has been generated using the scheme

introduced in Section 4. The surface spacing has been computed following the approach
discussed in Section 5. A value of hm=2mm, hM =60mm and sM =30 have been used.
Figure 7 shows the meshes obtained by using two di�erent values of the parameter �

and Table I reports their characteristics, i.e. the number of points NP and the number of
triangles NT .
Figure 8 illustrates the mesh obtained for a wing–fuselage aeronautical con�guration. The

number of nodes on the body and in the 3D domain are 15 000 and 284 000, respectively,
which corresponds to 1 562 000 tetrahedra. The maximum elements stretching is 50 and the
anisotropic nature of the mesh can be appreciated in Figures 9–11, where wing=tip zone,
wing sections near fuselage and tip zone are shown. The anisotropic approach can lead to a
reduction of nearly one order of magnitude of nodes used with respect to the isotropic case,
as shown in Figures 12 and 13.
The diagrams of Figures 14 and 15 show the elements shape quality distribution of sur-

face triangles and of tetrahedra. The quality of an element K [11] (triangle=tetrahedron) is
de�ned as

QK = �
hmax
�K

(33)

where hmax is the element diameter, i.e. its longest edge while �K is the inradius of the element
K . Note that this value varies between 1 and ∞, and that moreover the closer QK is to 1,
the better the element K is.
This grid has been used to compute a transonic inviscid �ow at M∞=0:85 and the angle

of attack �=2◦ and the correspondent pressure coe�cient distribution around the aircraft is
illustrated in Figures 16 and 17.
In the last example we present the mesh around a complex aeronautical geometry

(Figure 18). The number of nodes on the body and in the 3D domain are 18 900 and 315 000,
respectively, which corresponds to 1 923 000 tetrahedra. The maximum elements stretching is
50 and the anisotropic nature of the mesh can be appreciated in Figures 19–22.
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8. CONCLUSIONS

Most of the available unstructured grid generators can only construct isotropic meshes. This
is a serious limitation since the use of anisotropic meshes can result in signi�cant savings
when the �ow �eld or the geometry of the domain are characterized by anisotropic features.
This is indeed the case in many applications and is typical in CFD.
In this paper an original procedure to anisotropically prescribe the metric �eld on both the

surface and the volume of the computational domain is presented. The spacing on the boundary
mesh is computed by the analysis of the principal curvatures and directions of the surface,
and the spacing in the domain is obtained by propagating the spacing at the boundaries by
means of a background grid. The special treatments required to deal with nearly �at surface
and to regularize the spacings are thoroughly discussed in the paper.
The performance of the proposed approach is demonstrated by presenting the results

obtained in the anisotropic 3D grid generation of complex aeronautical and turbomachin-
ery con�gurations. The test computations here presented seem to indicate that a reduction of
nearly one order of magnitude of nodes with respect to the isotropic case can be obtained by
the proposed methodology.
The extension of the code to the generation of hybrid grids for the solution of viscous

problems is under development.
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